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ABSTRACT

In this report we describe optical disks that store data holographically in three di-
mensions using either angle multiplexing or wavelength multiplexing. Data is stored and
retrieved in parallel blocks or pages, each page consisting of approximately one million

bits. The storage capacity of such disks is derived as a function of disk thickness, pixel
size, page size, and scanning parameters. The optimum storage density is approximately

120 bits/pmo2 .



1. Introduction

Holographic storage of data in 3-D media such as photorefractive crystals can provide high storage

density and fast parallel access to the stored information. Such memories were investigated very extensively

in the early 60's [1-5]. Even though these early efforts produced remarkable results they never found practical

application largely because of material limitations such as low sensitivity, fanning, and hologram decay.

Interest in holographic 3-D memories has been revitalized in recent years for a variety of reasons, including

significant advances in recording materials (photorefractive and photopolymers), dramatic improvements in

all optical devices (lasers, spatial light modulators, detectors, etc.), and most significantly, the emergence of

applications, such as neural networks, machine vision, and databases, that can make use of the capabilities

of holographic 3-D memories. The theoretical upper limit on the storage density is V/A 3 , where V is the

volume of the hologram and A is the wavelength of the light. This limit is in the order of 1012 bits per cm 3 ,

however in practical systems only 109-10'° bits per cm 3 is achievable due to the finite numerical aperture of

the optical system that transfers the data into the optical system and the dynamic range of the crystal. For

example, 10' can be superimposed at the same location, each hologram consisting of 103 X 10 3 pixels, giving

a total memory of 109 bits per location. The practical usefulness of such a memory must be considered

in light of the fact that electronic RAM memory chips currently under development have storage density

of 64 million bits [6]. Twenty such chips mounted on a single board could match the storage capability of

the volume hologram. In order to build a mass storage medium that is not threatened by semiconductor

memories, we must construct holographic memories that have a capacity much larger than 109 bits.

signal

beam

:ference
beam

(reflection

reference beam

(transmission type)

Figure 1. The 3-D holographic disk (HD).

In this report, we present a spatially multiplexed 3-D holographic storage scheme that w,, refer to as the

3-D holographic disk (HD) [7]. As in all spatial multiplexing schemes, the most crucial component of the
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system is the scanning mechanism that steers the readout mechanism to different locations on the disk. In our

system, spatial multiplexing is done in a disk configuration with the rotation used to access different recording

locations, as shown in Figure 1. Two light beams (a signal and a reference) interfere inside the photorefractive

crystal to create a phase grating via the photorefractive effect. Multiple holograms are recorded at the same

location by changing the reference beam angle (angle multiplexing) or by changing the wavelengths of the

reference and signal beams (wavelength multiplexing). Because of the Bragg-matching requirement of volume

holograms, individual holograms can be read out by changing the direction of the reference beam (for angle

multiplexing), or the wavelength of the reference beam (for wavelength multiplexing). We will assume

throughout that the image beam is at normal incidence on the crystal.

The main result of this report is the derivation of the storage capacity of 3-D HDs as limited by geomet-

rical constraints. We show that a 3-D disk of approximately 1.5 cm thick has storage density approximately

equal to 120 bits/pm 2 . Thus, a 3-D HD stores the equivalent of more than a hundred conventional 2-D disks

of the same area.

2. Angle Multiplexed Holographic Disk

In this section we address the following question: What is the maximum number of bits, N, that can

be stored in a 3-D HD of area A using angle multiplexing? We will show that in order to maximize N

we must properly select the thickness of the HD (L), the magnification of the optical system that transfers

the data to the disk, and the angles of incidence for the reference beam. In what follows we derive these

optimum parameters. The limits to storage capacity in this report are due to geometrical constraints. The

dynamic range of the recording material imposes a limit on storage density independently. We will see that

the capacity due to the geometric constraints is more restrictive than the material limitations in the 3-D HD

system.

We can express N as follows:

N = N.N.N, . (1)

In the above equation N, is the number of separate locations on the disk where holograms are superimposed,

No is the number of holograms that are angularly multiplexed at the same location, and N 2 is the number

of pixels in each stored hologram. We will derive an expression for each of the three quantities and then

maximize their product with respect to the various parameters of the system.

2a. Maximum Number of Angularly Multiplexed Holograms

We derive an expression for Lhe maximum number of holograms, No, that can be angularly multiplexed

at a single location. In the following analysiq dAta is stored by rcuidiun; either reflection or transmission
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holograms. The reference beam is a planewave whose incident angle is OR. The signal beam can be considered

as a superposition of planewaves that spans a range of angles. To calculate No we must first calculate AOR,

the full width of the angular selectivity of each hologram, which we take to be the angular separation between

adjacent holograms. An approximate expression for AOR is [8]

R = 8A cosOS (2)
nrL Isin(OR + Os)"

where A is the wavelength, L is the thickness of the hologram, n is the index, and Os is the incident angle of the

central planewave component of the signal beam (see Figure 2). For transmission holograms 0 < [OR < 7r/2,

and for reflection holograms 7r/2 < R[ I < 7r. The signal beam is assumed to be in the range 0 < Jos I < 7r/2.

SIGNAL
BEAM

Os

, REFERENCE
L BEAM

Figure 2. Recording geometry.

Eq. (2) is only an approximate estimate for the angular selectivity of the entire grating since different

planewave components have different AOR. However, Eq. (2) is commonly used for setting the angular sep-

aration between reference beam angles. The cross-talk resulting when holograms are angularly multiplexed

in this way has been calculated recently [9].

To calculate the number of holograms that can fit into a range of reference beam angles OR spanning

from 01 to 02 (each hologram being separating from its adjacent holograms by a corresponding AOR), we

observe that

8A

Isin(OR + Os)IAOR = - coss, (3)
nrL

which is valid for all possible angles OR. If we add together No - 1 such equations, one for each value of OR,

and approximate the left hand side of the summation by an integral, we obtain the following expression:
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t'O O+dO 8A(Ne -1)i n~rL cos s. (4)

Solving for the number of reference angles, we get

1 (n+rL' Icos(0s + O,) - cos(Os + 0,)(

N 8 -= 8--- coss ' (5)

where it is assumed that either 0 <Os + 01 <Os + 02 < ir, or -r/2 <Os + 01 <Os + 02 <0. Physically,

this means that the reference beam is always to one side of the signal beam. The above calculations were

carried out for angles inside the crystal. We can use Snell's law to convert to angles outside the crystal.

In the following, we will assume that the image beam has normal incidence (Os = 0). In this case,

Eq. (5) becomes

No = 1+ (n8L) Icos01 - cose 2 1, (6)

where we have 0 < 01 < 02 < 7r/2 for transmission holograms. We can increase No by a factor of 2 by

recording a second set of angularly multiplexed holograms in the range -01 to -02, since the number of

holograms that can be angularly multiplexed in the same range of angles is equal to the expression in Eq. (6).

It is also possible to simultaneously angularly multiplex reflection and transmission holograms, as shown in

Figure 3. Therefore, the geometric limit on the total number of holograms that can be superimposed in the

same location is 4 times the expression in Eq. (6)

TRANSMISSION

REFLECTION HOLOGRAMS

HOLOGRAMS 02

SIGNAL BEAM

-e 1

-0 2

Figure 3. Angular multiplexing by reflection and transmission holograms from both sides of the

signal beam.
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2b. Spatial Multiplexing

The number of non-overlapping spatial locations on a disk with area A is

N. = A- A (7)

where a = u, x w' is the area of each location. To determine w and u," we need to take into account the

fact that the stored images can be in exact focus at only one plane in the volume of the crystal. As the

thickness of the crystal increases, the area occupied by the defocused image at the surface of the hologram

also increases. Moreover, the size of the area that is illuminated by the off-axis reference beam increases

in one dimension as the crystal thickness and the angular sweep increase. We will derive expressions for w

and w' with reference to the geometry of Figure 4. We assume that the images to be stored are at normal

incidence and are focused at the middle of the crystal. We can calculate the extent of the defocused image on

the surfaces by tracing the rays corresponding to the highest spatial frequency of the focused image. Let 6 be

the resolution or pixel spacing of the focused image. Then the maximum spatial frequency is approximately

1/6, corresponding to a diffracted plane wave traveling at an angle 0 = sin-l(A/nb). We use the ray optics

approximation to trace this maximum spatial frequency component and obtain the size of the defocused

image at the crystal faces:

01

02..........................

w w

........ ............. . . .. . . . .. . ......... ........... . . . . .

L

Figure 4. Angle multiplexing: extra area taken up by defocusing and reference beam angle change.

w = Vp6 + L tan 0 = Np6 + L

V(nb/X) 2 - (8)

As shown in Figure 4, in order for the reference beam to fully illuminate the volume of the crystal that

the signal beam occupies, it must illuminate a width larger than w in the direction of reference beam sweep.

From the geometry of Figure 4, this width is
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/ = w -- L tan 92. (9).

The overall area that nmst be devoted to each recording location is therefore

a = wW'= w(w + L tan 02), (10)

where uw is given by Eq. (8).

2c. Optimum Np, 81, and 6

We can now write an expression for N, the total number of bits stored, by using Eqs. (7)-(10) and

Eq. (1):

N = AN" No' =A + 24-A(COS 01 -COS 0') .1S]1[+

S+ +

We wish to maximize the above expression by optimally selecting N.,, L, 01, •2, and 6, which are the

parameters we can control.

First of all, we note that N docreases monotonically as 01 increases (in our analysis 0 < 01 < 7r/2),

therefore Ot = 0 is the optimum value. However, since the angular selectivity is very poor around 01 = 0,

in practice the minimum angle of the reference is set at 01 • 10' inside the crystal. Next we consider

the optimum number of pixels, N,. Taking the derivative of N with respect to Np shows that N is a

monotonically increasing function of N,. This result confirms our intuition since the increase in the disk

area required to store the holograms due to defocusing and angular multiplexing can be thought of as an

"edge" effect. The use of larger images implies fewer recording locations on the same disk area, and hence

fewer edges. In practice Np is limited by the number of pixels of the spatial light modulator (SLM) to

approximately NP = 1,000. For the rest of this section, we will consider 01 and N,, as given and fixed.

The determination for the three remaining variables (L, 02, and 6) is more difficult. We first consider

the optimum pixel size 6. For a given L, N is maximized with respect to 6 when u) is minimized with respect

to 6. To find the optimum 6 it is convenient to write w as

w :- A Yl2 ( + c 3 12  , (12)

where

(,)2= 3(13)

and

C= (••L ) 2
/
3  (14)
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To minimize w with respect to 6, we diffe entiate u, with respect to y (since y increases monotonically

with b) and set the derivative to zero. This yields the following equation for y

y3 = cy +1. (1a)

The solution to this cubic equation is

Y 1+ 1 C3  1 1 C3 (1by= +- T+ - (15b)
ý2 44 ý-27 + 12 4 -2-7

which can be evaluated for a given L to yield the optimum 6. Once y is determined we can solve for the

optimum pixel spacing, bo, from the following equation:

bo=A y3/2.(6
bý - Y(16)

U

It can be shown that 6, increases as L increases.

The above solution, however, may not always be realizable. In any practical system, the minimum 6

(denoted as 6mm,,) is limited by the imaging system to a value larger than the wavelength A. If we use an

imaging lens of F/number z, the smallest resolvable spot is

6an= A vf4-i2+, (17)

which corresponds to the highest spatial frequency planewave traveling at an angle

8i = siir1 (A) .(18)

Inside the crystal, this becomes (from Snell's law)

0,. = sin- 1 (sin 8)

= sin) (19)

Therefore the smallest resolvable spot size inside the crystal is also 6 in as given by Eq. (17).
6 n•m. is the lower bound for the size of 6. If L is too small, 6, (from Eq. (15)) becomes less then m,,. . In

that case, we set 6 = 
6
min* Since 6o increases as L increases, we can use Eqs. (13)-(16) to find the smallest

L for which &5 is larger than kmmn:

L , , , A N p ?1 .Y : ---• 1 2 / 3

Lmin= X (i.1), (20)

where
Ym,. 2/3 (21)

8



We will refer to the condition where the optimum 6 .ss than , as the -thin" disk regime. If. oin the

other hand, the optimum pixel spacing is larger than the resolution limit of the lens, this corresponds to

the -thick" regime. For example, for n = 2.2, A = 500 nm1, .P = 1000, and using a F/3 imaging lens (i.e.,

- = 3), we get ..... = 3.04 pill and L.... = 40.36 amm. Note that Lu.....does not depend oil 0,

"To summarize, if L > Lr,,, (thick disk), we use 6 = 6o (from Eq. (15)), and if L < L,,1.. (thin disk). we

"lse i =6.... (as given by Eq. (17)).

2d. Optimum Thickness L

Our problem is now reduced to maximizing N with resp-ct to the two remaining variables L and 02.

We first treat 02 as fixed, and find the optimum L that maximizes N/A.

In the range L < L,,,, we use b,,,in ;Ls the optinmum 6, and write N/A from Eq. (11) as

1 1 + (x (22)

N/A =2 b'-'(1 -4- ;Ih)(1 + -yx)

where

= , (23)

o = --- ,(.01 1 cosa:), (23)

3 1= 3 /-2 3 (25)

andt

tan-l" (26)
3 (G

Ymn

We can solve for the optimum L by differentiating the expression in Eq. (22) with respect to x. The maxinum

N/A turns out to be

NA 0-/31 (27)

which occurs at

L =-- + -- (28)

assuming of course that L,, < Lm,. If L,, > Li.,, this means that the optimum thickness is out of the

thin regime where the analysis used to derive L. applies. Within the thin regime the nmaxinmmi thickness L

occurs at the boundary since N/A is nmonotonically increasing with L for L < L ... To obtain the overall

optimunm thickness L we must compare the maxinmnu obtained from this regime (i.e., L < L ,,,, ) with the

9



optimum thickness obtained from the thick regime (L > L,,.,,,) and finally select the thickness that yields

the larger density N/A.

As an example, we continue with twe previous eyample where 6,,i, = 3.04 pmn (for a lens with F/n,-mber

of 3). If we take 81 = 100 and 02 = 20*, we find L, to be 16.74 mm, which is less than L,,,i, = 40.36 mam.

Therefore, the solution obtii,,Hd from the thin regime is the valid optimnun thickness. Note that as N.

increases, so does a, and tCwrr.f-e- the expression in Eq. (27) increases. For large NY,, the maximum N/A as

given by Eq. (27) increas-q., 'pi(oxinately linearly with N., or the square root of the total number of pixels

For L > L,,mn, we can use Eq. (16) for 6 and using Eqs. (1X)-(15), Eq. (11) can be written as

NI/A= (n)2 1 + ac3/2 (29)
"Y (3/2+ c3/2) (p3/2±+ ' j2 +±c3/2 tan9

The above expression can be evaluated numerically to find the value of L which maximizes NIA. We can

also derive a relatively simple asymptotic expression (for large L) by observing that as L --# OC, y -- v.

The asymptotic expression for NIA is

N/A -- (- (3(cos), -cos.)AN(0
N16 tanL (30)

The above expression predicts that the density will decrease as the disk thickness becomes very large. This

is confirmed by the numerical results we present in the following section.

2e. Optimum 02 and the Maximum Storage Density

The final step in the optimization of the storage density N/A, consists of optimally selecting 92. Since

we cannot analytically derive the optimum angle, we resort to numerical methods. In Figure 5 we plot

Eq. (22) in the thin regime (solid line) and Eq. (29) in the thick regime (dotted line) as a function of L for

various values of 02 using the optimum value for 6. The vertical line indicates the transition from one regime

to the other. The optimum values for L and 0 are those that yield the maximum density. The parameters

used in plotting Fig. 5 are A = 500 nmn, N, = 1,000, n = 2.2 (the index of refraction for LiNbO 3 crystals),

and 01 = 10". 92 = 300 is the maxi,,um value for which N/A is plotted since 27.04* is the largest angle

that can be supported inside the crystal (due to Snell's law) without resorting to the use of index matching

fluids.

From Figure 5, we se, that the maximum N/A is obtained near L = 1.5 cm and increases monotonically

with 02 for the parameters we selected. In this case, the optimum thickness is in the thin regime (L, < Lm,,,).

Since it is not practical to use 02 = 30* inside the crystal (the critical angle is 27.04*), we get a realistic

estimate for the achievable density by using 02 = 20*. The corresponding angle swing outside the crystal

is then 22.5* to 48.8* (total angular swing of 26.3*) which is practically achievable. The maximum density

10



N/A for various values of 02

N,,=1000, n=2.2. 0E=10, X=500 nm

102

= fI

100
i0-1 i0-1 100 101 102 l01

L (mm)

Figure 5. Angle multiplexing: N/A vs. L for various values of 02. We take N, = 1000, n = 2.2,

A = 500 nm, and 01 = 10°.

N/A is 29.3 bits/pim2, which is obtained for a crystal thickness of L = 16.74 mm using N9 = 1306 angularly

multiplexed holograms. This density can be increased by a factor of 4 (giving us N/A = 117.2 bits/lim 2 ) if

we simultaneously record reflection and transhzission holograms in the same reference angle range from both

sides of the signal beam, as shown in Figure 3. The area for each recording location is u, x 0 = 4.3 x 10.4 mm 2.

Figure 6 is a plot of the optimum density and also the number of angularly multiplexed holograms, No, as

a function of L. For the thickness that yields maximum density, No = 1, 306 holograms. Since more than

5,000 holograms have been recorded and faithfully reproduced in Lithium Niobate [101, the geometric factors

considered in this report limit the recording more severely than the material dynamic range. As another

example, if we record only 100 holograms at each location, then the optimum thickness is a little over

1 mm and the corresponding storage density is about 8.8 bits/pm 2 (compared to about 30 bits/jim 2 for the

optimum design). This density can be i:-reased by a factor of 4 as we already described in Figure 3.

3. Wavelength Multiplexing

Wavelength multiplexing [11-12] is an alternative method for multiplexing holograms in a single location

on the HD. In this section we calculate the capacity of a wavelength multiplexed HD using a similar derivation

as for angular multiplexing. The number of bits that can be stored is expressed as

N = N." NAN" (31)

where NA is the number of wavelength multiplexed holograms. We assume that the wavelength A sweeps

from A, to A2, with Al < A2 -.
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NP-=1000, n=2.2, X=500 nm

104 9,=100. 9e=200

102

10'

100 N/A (bits/Mm')

1 0 1 . . . . . .

10-' 10- 100 10 10t 103

L (mm)

Figure 6. Angle multiplexing: optimum N/A (optimized with respect to 6) and Np as functions

of thickness L. We take AN = 1000, n = 2.2, A - 500 nm, 01 = 100, and 02 = 200.

0*

w NS

Figure 7. Wavelength multiplexing: extra area taken up because of defocusing and wavelength

chauge.

For wavelength multiplexing, we again assume that the image is at normal incidence and focused at the

middle of the crystal (Figure 7), and that the reference beam is counter-propagating with the image beam

also at normal incidence. In this case, the problem of image defocusing at the crystal surface is the same,

and we get Eq. (8) for the width w as before. However, since the reference beam is co-linear with the signal

beam for all wavelengths, there is no extra width taken up by the L tan 02 term in the expression for w' in

Eq. (9). On the other hand, as A sweeps through A, to A2 , u; changes. For any choice of 6, the largest w is

for A = A2 . Therefore we have

12



No = A(32)

where
= NPb + L/)2 (33)

,(-n 6/ A 2)1

is a function of A2 -

To find NA, we note that the half-width of the (frequency) selectivity AV is [8]

AV= =-, (34)

nL'

where vc is the speed of light in vacuum. As A sweeps over A, to A2, the number of wavelength multiplexed

holograms that can be stored is therefore

N=+ v- v2 = 1 + t(1_ , (35)
2Av 2 \AA 2~

where we take the separation between adjacent holograms to be a full width 2Av. Using Eqs. (32), (33),

and (35), we then have

N=AN 2  2+A(I A22(36)
P Npb + L

3a. Optimum Np, A1 , and 6

We now want to maximize N with respect to N., L, A1 , A12 , and 6. As before, N increases monotonically

with Np, which is limited by the SLM to about 1,000. N also increases as the minimum wavelength A1

decreases. This will be limited by the shortest usable wavelength we can get out of a tunable laser and/or

the spectral sensitivity of the material. For the remainder of this section, we will assume that Np and A, are

given and fixed.

The three remaining parameters A2 , L, and 6 are more complicated. We first take L and A2 as fixed,

and find the optimum 6. Considering N/A as a function 6, we find as before that the maximum N/A is

obtained when w is minimized with respect to 6. We then get the same set of equations as Eqs. (13)-(16),

except with A replaced by A2 . We also have the same 6,,. and L..n (with A replaced by A2) conditions as

given respectively by Eqs. (17) and (20). Note that both 6m..i and L,,,i scale linearly with wavelength (since

y,,mm depends only on n and z, the F/number of the imaging lens). It should be emphasized, that 6,.i. is

the resolution of the imaging system using wavelength A2 . The resolution of the system using A, (which is

less than A2 ) is of course better.

In summary, if L > Lm.i, we use 6 = 60 (from Eq. (15)), otherwise we use 6 = 6,.j. (as defined in

Eq. (17)); in these equations, A is replaced by A2. As an example, for A2 = 540 nm and a imaging lens

13



with F/numuer of 3, we have 6 ,.in = 3.28 jim and Lmin = 43.59 mm. For A2 = 750 nm, these become

6&.n = 4.56 jim and Lmm, = 60.54 mm.

3b. Optimum L and A2

We now find the optimum thickness L that maximizes N/A. In the thin regime (L < Lmine) we take

6 = 6 .in, and write N/A as

1 +a- (37)
N/A= 6 2  (1 + flx) 2 '

mrin

where

nL (38)

\ 2 N )
S= NL1i , (39)

and

1
3 = (40)

By differentiating the expression in Eq. (37) with respect to x, we find the maximum N/A to be

1 a 2  (41)
b2 40( - 0)'

minsi

which occurs at

L = L, = --A•Nn + 1 (42)

For example, for A1 = 500 nm, A2 = 540 nm (A2/Ai = 1.08), n = 2.2, and N, = 1000, we get Lo, = 43.82 mm.

If A2 increases to 750 nm, Lo increase to 60.88 mm. In both cases, Lo is larger than Lnin (43.59 mm and

60.54 mm respectively). This means that in there is no maximum in the thin regime and therefore in the

range L < Lmin, N/A is monotonically increasing with L. In this case, we would select the boundary

value (Lin) for the best thickness obtainable from the thin regime. Notice that for wavelength multiplexed

storage the optimum thickness of the disk can become quite large. Even though we are not considering

materials issues in this report, we should point out that the useful thickness of the material in practice can

be limited by absorption. In some materials (e.g., Lithium Niobate) it is possible to reduce the absorption by

properly preparing the material (e.g., by adjusting the dopant and reduction/oxidation level). The reduced

absorption will typically reduce the recording speed of the material for a given light intensity. Therefore,

when materials considerations are included in the design process, this trade-off between speed and density

will emerge.
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In the thick regime, L > Lia,, we use Eqs. (15) and (16) (with A replaced by A2 ) to obtain 6, and write

N/A as

N/An= ) 2 1+ac3/2 2- (43)
N A2 (y3/2- + 2

where a is given by Eq. (39). As before, as L -- 00, y -V . For wavelength multiplexing, however, the

asymptotic behavior of N/A is different. As L o o, N/A saturates and approaches

N/A _..n 2NF 1 (1 )(44)

8 A2 (A• •A 2

Thus for the range L > , N/A also increases monotonically with L.

Note that the saturation value of N/A increases as Np increases and A, decreases. Also, for any choice

of A2/Aj, we have

(45)

with equality at

- = 2. (46)
A,

Thus, even if it is practical to have a light source with such a large range of wavelength tunability, the

optimum setting for A2 /Aj in order to obtain maximum saturation density is 2 (provided we use the same

A,). For practical systems, A2/A1 is smaller than 2, and in this range the saturation value of N/A increases

as A2 /Al increases. In the case where AA = A2 - A, < A, (A2 z A,), the saturation value given in Eq. (44)

is approximately

NIA ;ý 2 NN AA
8 A3' (47)

which is proportional to AA.

In practice, the range of usable wavelengths is determined by the laser system. For instance, dye lasers

can be tuned in the range from 370 nm to 890 nm, which gives us a A2/Aj of 2.40, in excess of the optimum

A2/A\ = 2 requirement. It should be noted, however, that it is necessary to use several different dyes in

order to achieve this range of wavelengths. For a typical broadband laser dye such as Coumarin 6, the range

is from 510 nm to 550 nm, which only gives us a A2/Aj of 1.08. For Ti:Sapphire lasers, the range is 690 nm

to 1025 nm, which gives us a A2 /A1 of 1.48.

As a specific example, consider the case where Np = 1000, n = 2.2, and A, = 500 nm. We plot N/A as

a function of L (where N/A has been optimized with respect to b) for various values of A2 /A,. The result is

shown in Figure 8. We see that N/A saturates for large L (around 5 cm) as expected, and the saturation

value is largest for A2 /A, = 2. In Figure 9, we plot N/A and NA as functions of L for A2/A, = 1.08 and
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N/A for various values of X2/\,

1°, N,=-1000, n=2.2. X,=500 nm

2102
AdA,,=3.0

N101
A A=1.08

100
10-1 10-1 100 10' 102 103

L (mm)

Figure 8. Wavelength multiplexing: optimum N/A (optimized with respect to b) as a function of

L for various values of A2 /A• 1. We take A, = 500 nm, Np = 1000, and n 2.2.

NP=1000. n=2.2. X1=500 nm
10'

/=1.08

l01 N, .

102

,01' N/A (bits/Iim2 )

100 7

10-2 10-1 100 101 102 103

L (mm)

Figure 9. Wavelength multiplexing: optimum N/A and N\ as functions of thickness L for A2 /A, =

1.08 and A2/A•1 = 1.5. We take A, = 500 nm, N. = 1000, n = 2.2.

•2/Aj = 1.5 using the same Np, n, and A,. For A2/Aj1 = 1.08, N/A approaches 166.0 bits/pm 2, while for

,2/Aj = 1.5, N/A approaches 537.8 bits/Jim 2.

3c. Storage Density and Optimum \ 2 for "Thin" Disks

The point where L causes N/A to reach saturation is of the order of 5 cm. At this thickness, it becomes

questionable about what we mean by a "disk". In practice it may be desirable or necessary (e.g., because of
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absorption) to keep the thickness small. In this case we are in the L < Lmin range (even though Lo may be

larger than Lni,), and N/A is given by Eq. (37). We can approximate Eq. (37) by

N/A - - L cx , (48)22• 2l A2 •

if we assume that

ax > 1 > OX. (49)

In the previous example, a = 40 for A2/Al = 1.08, and a = 250 A2/A\ = 1.5, while 3 = 5.60 x 10-1 in both

cases, so the condition is satisfied.

If we limit x and hence the disk thickness L to the range required by Eq. (49), the optimum A2 can be

found by taking the derivative of the expression in Eq. (48) with respect to A2 and setting it to zero. In this

case, it is easy to show that the maximum N/A occurs for A2/A1 = 1.5 (again assuming that we are using

the same A1 ), which is very close to the value provided by Ti:Sapphire lasers. Therefore, in this case the

density does not increase indefinitely with AA.

Finally we can also calculate the "knee" of the N/A curve, which we define as the point were the

expression given by Eq. (47) reaches the saturation value. This is given by

____2 4z2+I

L4=,K.mi - _ nA 2N,. (50)L -LK-- 4A-2 4

which is proportional to A2 . For A2 /A1 = 1.0, LK = 11.0 mm, which gives us N/A = 106.5 bits/pm2 and

N\ = 1,794. For A2/AI = 1.5, LK = 15.3 mm, which gives us N/A = 34.46 bits/pmI2 and N\ = 11,221. In

both cases, LK is less than Lmn, and the corresponding values of N/A is slightly over half of the saturation

values for NIA (i.e., approximately a 3 dB drop).

4. Discussion And Conclusions

The values for the various parameters discussed in this report are summarized in Table I, and the storage

densities N/A are plotted in Figure 10 where we denote the densities of angle multiplexing and wavelength

multiplexing by (N/A)e and (N/A)A, respectively.

In Figure 10, the curves for (N/A)a using just the angle range e1 to 02 (either as transmission or

reflection holograms) is marked as (x 1). We see that it is about a factor of 2 smaller than (N/A)A. However,

if we angle-multiplex from both sides of the signal beam, (N/A)e increases by a factor of 2 (denoted by the

x2 curve in Figure 10). If we further record both reflection and transmission holograms (as in Figure 3),

this increases by a factor of 4 (denoted by the x4 curve in Figure 10). In this case, (N/A)o becomes larger

than (N/A)A until L reaches about 12.5 mm, where both (N/A)A and (N/A)e are about 115 bits/prm2 .
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TABLE I. Value of Parameters used in Figure 10

(F/number of imaging lens is 3)

Parameters Angle multiplexing Wavelength multiplexing

Index of Refraction n = 2.2 n = 2.2

Number of Pixels N 2 - 10 6  N2 - 106

Wavelength A = 500 nm A, = 500 nm, A2 = 540 nm

Angles 01 = 10°, 01 = 200,

Pixel Size 6,,,,, = 3.04 pm 6,,, = 3.28 pm

Critical Thickness L = 40.36 mm L,,t,, = 43.59 mm

Optimum Thickness Lo = 16.74 mm Lo ;- 30 mm

Maximum Density N/A = 4 x 29.3 bits/pm 2  N/A = 166.0 bits/pom2

Number of Holograms No = 1306 NA, Z 5000

N =1000, n=2.2, \=X,=500 nm

(NIA)102

N - 'x4

10I xl/
/

I. (N/A)s
/ ' i/,

10 010°
10-1 10-1 10° 101 101 103

L (mm)

Figure 10. Comparison of angle multiplexing and wavelength multiplexing. We take A = A, =

500 nm, A2 /Aj = 1.08, n = 2.2, Np = 1000, 01 = 10°, and 02 = 200. The density using angle

multiplexing is denoted by (N/A)o, and the density using wavelength multiplexing is denoted by

(N/A).

One might ask whether it is possible to achieve higher density by recording in the Fourier plane instead

of the image plane. It turns out that the storage density is the same. This is because the space-bandwidth-

product is a constant. Specifically, consider an image of extent a = N.6, where 6 is the pixel spacing and

Np is the number of pixels along one dimension. Let b be the extent of the Fourier transform of this image
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(by a lens of focal length F), and let 1/6' be the highest spatial frequency of the Fourier transform. Then

within the paraxial approximations

N = a = b (51)

b61

This shows that recording in either the image plane or the Fourier plane will give the same minimum width.

If we record holograms at off-image or off-Fourier planes, the required width w increases. However, it

is sometimes desirable to do this for purpose of noise, image quality, and alignment sensitivity. The tradeoff

between these requirements and storage density will have to be considered in the design of a practical system.

We have derived the optimum conditions for achieving the maximum storage density of a 3-D HD

disk using either angle multiplexing or wavelength multiplexing. Such optimally designed disks can store

information with area densities more than 100 bits/pum2 with disk thickness approximately 1 mm. However,

the limits to storage density derived in this report are only due to the geometry of the system. The storage

density can also be limited by noise (cross-talk, detector noise, media defects, etc.) and the limited dynamic

range of the recording medium. These limits to N/A (addressed in a separate report [13]) prove less restrictive

than the geometric limits derived here. This is supported by recent experiments [14] where 1000 holograms

were superimposed and reconstructed with extremely low probability of error in a lithium niobate crystal

with 1 cm thickness. The parameters of this experiment were reasonably close to the optimum parameters

we derived.
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FIGURE CAPTIONS

1. The 3-D holographic disk (HD).

2. Recording geometry.

3. Angular multiplexing by reflection and transmission holograms from both sides of the signal beam.

4. Angle multiplexing: extra area taken up by defocusing and reference beam angle change.

5. Angle multiplexing: N/A vs. L for various values of 02. We take N, = 1000, n = 2.2, A = 500 nm, and

91 = 10°.

6. Angle multiplexing: optimum N/A (optimized with respect to 6) and Np as functions of thickness L.

We take Np = 1000, n = 2.2, A = 500 nm, 01 = 10", and 02 = 20*.

7. Wavelength multiplexing: extra area taken up because of defocusing and wavelength change.

8. Wavelength multiplexing: optimum N/A (optimized with respect to 6) as a function of L for various

values of A2 /A1 . We take Al = 500 nm, Np = 1000, and n = 2.2.

9. Wavelength multiplexing: optimum N/A and Nx as functions of thickness L for A2 /A1 = 1.08 and

A2/A, = 1.5. We take A, = 500 nm, Np = 1000, n = 2.2.

10. Comparison of angle multiplexing and wavelength multiplexing. We take A = A, = 500 nm, A2 /Aj =

1.08, n = 2.2, Np = 1000, 01 = 100, and 02 = 20*. The density using angle multiplexing is denoted by

(N/A)e, and the density using wavelength multiplexing is denoted by (N/A)A.
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